在àpation ârapencv haar cascades atm¢At t t t t t t t toK
#python #ai #machinelearning #opencv

at≥p>£àmt aa的à假达面face_recognition,opencv,dlib a“rib¥ ¸ s£°°¢¢àm。 àm的±±±±±àmàmtImàmIt -

àmtim§àmt Atmtmtmttmtmtmtmtmtmtmpatm。抓机¥à启 toK±a±a -µ -HAARCASCADESàmàmàmàmstimàààmm了¢¢¢¢¢à假见t至out£ ^ tok的对象,面对面,面对面见点s°°

。 See you to¸ ° A¹ ° A¹ it dusk duck on the £ AGY ​​through ภPâq I Enti a¸ to¸ ภ¸ £ anthothers £ ā¸ «→ ¸ ¸ ¸ ¸ ¥ ¥ IC IC IC ICT · ICULT ICUR ICT(ICE)打扰见to的to骤trim§§citious 物函¸ to¸ ¢ ¢

- àmtrib

<强> 进口模量cv2à¹matplotlib。 pyplotà×

import cv2 as cv2
import matplotlib.pyplot as plt

¥«¥t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t oft igàumin£22之a。 ££££££for管理¥aš¸a报§

# Load the cascade
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

accodeâtomouthirialia别验b biountious t t t t t t tto≥完成làKuitàootow au£££qqfar²àmtart→£〜2 BY的¸ francescitàmtomugul3

à标
在±±±a±to≥ à攻£寻药±见屁了。 àm°°ð

# Read the input image
img = cv2.imread(r"--file path--")

国际作品·迪斯科英语婚礼与£mori -eäTor -e r英文 - §§thisto≥英语也4àA t t至¢¥¥至¢

àmtrimin±寻性物

# Detect faces
faces = face_cascade.detectMultiScale(img,1.1,5)

à假触±±to的检测to的tokt t to的to≥ ¢at抢

  1. imgà© £àmàm°àmt
  2. scalefactorà²à²à²à²à²àààth - à
  3. minneighbors£to£§¸这些Palsite阳性

# Draw bounding box around the faces
countFace = 0
for (x, y, w, h) in faces:
    rect = cv2.rectangle(img, (x, y), (x+w, y+h), (2, 150, 255), 2)
    countFace = countFace + 1
    num = str(countFace)
    cv2.putText(rect, num, (x, y-5), cv2.FONT_ITALIC, 0.5, (2, 150, 255), 2)

daa函穿着£à标 1.歌±±见à?来

  • imgašit thress�2²àmtrimμ完成
  • (x,y)àààRàm酸à这些见方法 -
  • (x+w,y+h)à - ikà©
  • (2,150,255)à标子«« - à«â€¥µ
  • 2a≥Brown的路径“ Beautiful Eye”白色b,由AIN bby由By By〜Aby〜Ab By生函数。 azzâŽà•走开£

2.22.àmt

  • 招募到生²
  • num -见方法见string Atmttmttmttmttmpt à×¥àm酸见
  • (x,y-10)a≥a ¢acta
  • cv2.font_itation to的to≥
  • 0.5×a anguightsto≥To≥
  • (2,150,255)a t t t t t t t t t t t t t t t t t t t t t t t t t t t tto≥±±y±A
  • 2 a a A a i to to to to to to poting o的francesco o rancesco o了¶见方法见点
在t to的tto≥ br>

# Showing number of faces detected in the image
print(len(faces),"faces detected!")

avA¥a的¥¥¥s)ˆ车。 - t to的dust→££bears≥A这些

±toK的aD t t t t t t t t t t t t t tok tok t toKT到££物to t ot到£a≥a≥A

# Plotting the image with face detected
# picture size
plt.figure(figsize=(10,10))
#show Picture detected
cv2.imshow('Results',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

da a的±±见方法。留物函→“ dog -â€à²ào你走开了£2之£,” 。

1.à© da的± ^±to的±to的±to≥To≥To≥ -da的 ^ to t to的tok t to a a a a a a a a a a a a a a a a a a a A a A留作→£HOGSaã→一个→一个¥“ to的HOM§§ši§àβ )fatimativalytiveative£in的

  • (10,10)àmàRetm。........生函

2.22.àmtRIMSSHOW('结果',img)

  • 结果是由Ancesa²àHothoir²àoa i来进行婚礼→届→²ào£££àK。 tto≥
  • imgpaio≥

a箭¥¥a稿“²Es£a的to≥ àKàKINK。 ¢¢b to面 ācuisai wa)£doorsàmt - 寻药源见点寻药源见点à攻μι‧¶t tto≥生and±ad Image description
a¹¥a的°à假函thispa函数solà±aā星,油àmt Image description

冒险倾斜物→£IT£a Eye Angle luc£a≥1y≥μιμ警。 §¶To的toKIr«-KOR²²à标a目标 a l oliveà -至她的婚礼¢A≥


¢生疗函见t to面打扰了¢μ μ回节t t t t t t t t t t t t toK±aˆ t t tom«±ˆ到tto≥

à假A ¥¥àm£àmmpart

import cv2 as cv2
import matplotlib.pyplot as plt
# Load the cascade
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

# open camera
cap = cv2.VideoCapture(0)

s攻见t t t t t t t t toàKITAMITeight

在a t to t to working to tok to t to的所有£ t t t t t t t t t t t t t to到££££££±±to队£aˆ to£t to-见à假ªàK了«à假¥àβ -¢¢¢àmt ¸¸§¸§¸ to¸ to¸ μā¹ ad¸ ภ± ภภ๠ภภภ'

while True:
    # read frame
    ret, frame = cap.read()
    # detect face from cmera frame
    faces = face_cascade.detectMultiScale(frame, scaleFactor=1.3, minNeighbors=5)
    countFace = 0
    # drawing rectangle
    for (x, y, w, h) in faces:
        rect = cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2)
        countFace = countFace + 1
        num = str(countFace)
        cv2.putText(rect, num, (x, y-5), cv2.FONT_ITALIC, 0.5, (2, 150, 255), 2)
    # show image
    cv2.imshow('Face Detection', frame)

    # press ESC to close camera tap
    if cv2.waitKey(1) == 27:
        break

# close camera and tap
cap.release()
cv2.destroyAllWindows()

££a²“¢¢¢¢¢¢¢¢¢¢¢¢ic¢icm¢ch¢ch¢ch¢¢ ²完成±to的t t t t t t t to -t to -t to - àβto -àpto -akawies¢aK¢a¹¢¥¥¥¥¥¥¥¥s。 μιμλ±4-5面a°°°°°°°°°d t t t tok ¢¢¢¢¢最好到来自to的分配。 到±to≥Cv2.WaitKey(1) ¢to Atm员工到At的抓机ààààt它们¥àmàmàmmmmmmmmpt 在 Image description