at≥p>£àmt aa的à假达面face_recognition,opencv,dlib a“rib¥ ¸ s£°°¢¢àm。 àm的±±±±±àmàmtImàmIt -
àmtim§àmt Atmtmtmttmtmtmtmtmtmtmpatm。抓机¥à启 toK±a±a -µ -HAARCASCADESàmàmàmàmstimàààmm了¢¢¢¢¢à假见t至out£ ^ tok的对象,面对面,面对面见点s°°
。
See you to¸ ° A¹ ° A¹ it dusk duck on the £ AGY through ภPâq I Enti a¸ to¸ ภ¸ £ anthothers £ ā¸ «→ ¸ ¸ ¸ ¸ ¥ ¥ IC IC IC ICT · ICULT ICUR ICT(ICE)打扰见to的to骤trim§§citious
物函¸ to¸ ¢ ¢ p>
- àmtrib <强> accodeâtomouthirialia别验b biountious t t t t t t tto≥完成làKuitàootow au£££qqfar²àmtart→£〜2 BY的¸ francescitàmtomugul3 p>
à标 国际作品·迪斯科英语婚礼与£mori -eäTor -e r英文 - §§thisto≥英语也4àA t t至¢¥¥至¢
àmtrimin±寻性物
à假触±±to的检测to的tokt t to的to≥ ¢at抢
daa函穿着£à标
1.歌±±见à?来
2.22.àmt
import cv2 as cv2
import matplotlib.pyplot as plt
# Load the cascade
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
在±±±a±to≥ à攻£寻药±见屁了。 àm°°ð
# Read the input image
img = cv2.imread(r"--file path--")
# Detect faces
faces = face_cascade.detectMultiScale(img,1.1,5)
# Draw bounding box around the faces
countFace = 0
for (x, y, w, h) in faces:
rect = cv2.rectangle(img, (x, y), (x+w, y+h), (2, 150, 255), 2)
countFace = countFace + 1
num = str(countFace)
cv2.putText(rect, num, (x, y-5), cv2.FONT_ITALIC, 0.5, (2, 150, 255), 2)
在t to的tto≥ br>
# Showing number of faces detected in the image
print(len(faces),"faces detected!")
avA¥a的¥¥¥s)ˆ车。 - t to的dust→££bears≥A这些
±toK的aD t t t t t t t t t t t t t tok tok t toKT到££物to t ot到£a≥a≥A
# Plotting the image with face detected
# picture size
plt.figure(figsize=(10,10))
#show Picture detected
cv2.imshow('Results',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
da a的±±见方法。留物函→“ dog -â€à²ào你走开了£2之£,” 。
1.à© da的± ^±to的±to的±to≥To≥To≥ -da的 ^ to t to的tok t to a a a a a a a a a a a a a a a a a a a A a A留作→£HOGSaã→一个→一个¥“ to的HOM§§ši§àβ )fatimativalytiveative£in的
- (10,10)àmàRetm。........生函
2.22.àmtRIMSSHOW('结果',img)
- 结果是由Ancesa²àHothoir²àoa i来进行婚礼→届→²ào£££àK。 tto≥ li>
- imgpaio≥
a箭¥¥a稿“²Es£a的to≥ àKàKINK。 ¢¢b to面
ācuisai wa)£doorsàmt - 寻药源见点寻药源见点à攻μι‧¶t tto≥生and±ad
a¹¥a的°à假函thispa函数solà±aā星,油àmt
冒险倾斜物→£IT£a Eye Angle luc£a≥1y≥μιμ警。 §¶To的toKIr«-KOR²²à标a目标 a l oliveà -至她的婚礼¢A≥
¢生疗函见t to面打扰了¢μ μ回节t t t t t t t t t t t t toK±aˆ t t tom«±ˆ到tto≥
à假A ¥¥àm£àmmpart
。
s攻见t t t t t t t t toàKITAMITeight
import cv2 as cv2
import matplotlib.pyplot as plt
# Load the cascade
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# open camera
cap = cv2.VideoCapture(0)
在a t to t to working to tok to t to的所有£ t t t t t t t t t t t t t to到££££££±±to队£aˆ to£t to-见à假ªàK了«à假¥àβ -¢¢¢àmt ¸¸§¸§¸ to¸ to¸ μā¹ ad¸ ภ± ภภ๠ภภภ'
while True:
# read frame
ret, frame = cap.read()
# detect face from cmera frame
faces = face_cascade.detectMultiScale(frame, scaleFactor=1.3, minNeighbors=5)
countFace = 0
# drawing rectangle
for (x, y, w, h) in faces:
rect = cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2)
countFace = countFace + 1
num = str(countFace)
cv2.putText(rect, num, (x, y-5), cv2.FONT_ITALIC, 0.5, (2, 150, 255), 2)
# show image
cv2.imshow('Face Detection', frame)
# press ESC to close camera tap
if cv2.waitKey(1) == 27:
break
# close camera and tap
cap.release()
cv2.destroyAllWindows()
££a²“¢¢¢¢¢¢¢¢¢¢¢¢ic¢icm¢ch¢ch¢ch¢¢ ²完成±to的t t t t t t t to -t to -t to - àβto -àpto -akawies¢aK¢a¹¢¥¥¥¥¥¥¥¥s。 μιμλ±4-5面a°°°°°°°°°d t t t tok ¢¢¢¢¢最好到来自to的分配。 到±to≥Cv2.WaitKey(1) ¢to Atm员工到At的抓机ààààt它们¥àmàmàmmmmmmmmpt 在